Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Experimental Cell Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Cell Research
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Anchorage of HIV on Permissive Cells Leads to Coaggregation of Viral Particles with Surface Nucleolin at Membrane Raft Microdomains

Authors: Sébastien, Nisole; Bernard, Krust; Ara G, Hovanessian;

Anchorage of HIV on Permissive Cells Leads to Coaggregation of Viral Particles with Surface Nucleolin at Membrane Raft Microdomains

Abstract

The cross-linking of HIV on permissive cells results aggregation of HIV particles with surface nucleolin, CD4, and CXCR4, but without affecting the organization of CD45. In addition, HIV particles and nucleolin coaggregate with glycolipid-enriched membrane microdomains (GEMs) containing ganglioside, and glycosylphosphatidylinositol-linked proteins CD90 and CD59, pointing out that HIV anchorage induces lateral assemblies of specific membrane components into lipid rafts in which surface nucleolin is also incorporated. Consequently, equilibrium density fractionation of extracts from infected cells revealed that HIV proteins and nucleolin copurify with Triton X-100-resistant GEM-associated proteins. After HIV entry, nucleolin is recovered also in fractions containing HIV DNA, viral matrix, and reverse transcriptase, thus suggesting that it could accompany viral entry. We show that surface nucleolin is markedly down-regulated a few hours following HIV entry into permissive cells; an effect that appears to be the consequence of its translocation into the cytoplasm. Our findings demonstrate that anchorage of HIV particles on permissive cells induces aggegation of surface nucleolin and its association with detergent-insoluble lipid raft components. Moreover, they support the suggestion that surface nucleolin and lipid rafts are implicated in early events in the HIV entry process.

Related Organizations
Keywords

Membrane Glycoproteins, Macrophages, Cell Membrane, Detergents, Receptor Aggregation, Down-Regulation, HIV, RNA-Binding Proteins, HIV Infections, Phosphoproteins, Actin Cytoskeleton, Protein Transport, Eukaryotic Cells, Membrane Microdomains, Antigens, Surface, DNA, Viral, Drug Resistance, Viral, Humans, HeLa Cells, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    73
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
73
Top 10%
Top 10%
Top 10%