Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Biology
Article . 2000
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2000 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
Current Biology
Article . 2000
versions View all 4 versions

Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx

Authors: Livesey, F.J.; Furukawa, T.; Steffen, M.A.; Church, G.M.; Cepko, C.L.;

Microarray analysis of the transcriptional network controlled by the photoreceptor homeobox gene Crx

Abstract

Terminal differentiation of many cell types is controlled and maintained by tissue- or cell-specific transcription factors. Little is known, however, of the transcriptional networks controlled by such factors and how they regulate differentiation. The paired-type homeobox transcription factor, Crx, has a pivotal role in the terminal differentiation of vertebrate photoreceptors. Mutations in the human CRX gene result in either congenital blindness or photoreceptor degeneration and targeted mutation of the mouse Crx results in failure of development of the light-detecting outer segment of photoreceptors.We have characterized the transcriptional network controlled by Crx by microarray analysis of gene expression in developing retinal tissue from Crx(+/+) and Crx(-/-) mice. These data were combined with analyses of gene expression in developing and adult retina, as well as adult brain. The most abundant elements of this network are ten photoreceptor-specific or -enriched genes, including six phototransduction genes. All of the available 5' regulatory regions of the putative Crx targets contain a novel motif that is composed of a head-to-tail arrangement of two Crx-binding-element-like sequences. Analysis of the 5' regions of a set of mouse and human genes suggests that this motif is specific to Crx targets.This study demonstrates that cDNA microarrays can be successfully used to define the transcriptional networks controlled by transcription factors in vertebrate tissue in vivo.

Keywords

Homeodomain Proteins, Mice, Knockout, Agricultural and Biological Sciences(all), Transcription, Genetic, Biochemistry, Genetics and Molecular Biology(all), Genes, Homeobox, Mice, Mutant Strains, Retina, Mice, Inbred C57BL, Mice, Gene Expression Regulation, Trans-Activators, Animals, Humans, Cattle, Oligonucleotide Array Sequence Analysis, Photoreceptor Cells, Vertebrate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    239
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
239
Top 10%
Top 1%
Top 1%
hybrid