Alcadein Cleavages by Amyloid β-Precursor Protein (APP) α- and γ-Secretases Generate Small Peptides, p3-Alcs, Indicating Alzheimer Disease-related γ-Secretase Dysfunction
Alcadein Cleavages by Amyloid β-Precursor Protein (APP) α- and γ-Secretases Generate Small Peptides, p3-Alcs, Indicating Alzheimer Disease-related γ-Secretase Dysfunction
Alcadeins (Alcs) constitute a family of neuronal type I membrane proteins, designated Alc(alpha), Alc(beta), and Alc(gamma). The Alcs express in neurons dominantly and largely colocalize with the Alzheimer amyloid precursor protein (APP) in the brain. Alcs and APP show an identical function as a cargo receptor of kinesin-1. Moreover, proteolytic processing of Alc proteins appears highly similar to that of APP. We found that APP alpha-secretases ADAM 10 and ADAM 17 primarily cleave Alc proteins and trigger the subsequent secondary intramembranous cleavage of Alc C-terminal fragments by a presenilin-dependent gamma-secretase complex, thereby generating "APP p3-like" and non-aggregative Alc peptides (p3-Alcs). We determined the complete amino acid sequence of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma), whose major species comprise 35, 37, and 31 amino acids, respectively, in human cerebrospinal fluid. We demonstrate here that variant p3-Alc C termini are modulated by FAD-linked presenilin 1 mutations increasing minor beta-amyloid species Abeta42, and these mutations alter the level of minor p3-Alc species. However, the magnitudes of C-terminal alteration of p3-Alc(alpha), p3-Alc(beta), and p3-Alc(gamma) were not equivalent, suggesting that one type of gamma-secretase dysfunction does not appear in the phenotype equivalently in the cleavage of type I membrane proteins. Because these C-terminal alterations are detectable in human cerebrospinal fluid, the use of a substrate panel, including Alcs and APP, may be effective to detect gamma-secretase dysfunction in the prepathogenic state of Alzheimer disease subjects.
- University of Tokyo Japan
- United States Department of Veterans Affairs United States
- Fukushimura Hospital Japan
- Edith Cowan University Australia
- Tottori University Japan
572, Calcium-Binding Proteins, Membrane Proteins, Receptors, Cell Surface, ADAM17 Protein, Cell Line, Protease Nexins, ADAM Proteins, ADAM10 Protein, Amyloid beta-Protein Precursor, Mice, Alzheimer Disease, Medicine and Health Sciences, Animals, Humans, Amyloid Precursor Protein Secretases, Peptides
572, Calcium-Binding Proteins, Membrane Proteins, Receptors, Cell Surface, ADAM17 Protein, Cell Line, Protease Nexins, ADAM Proteins, ADAM10 Protein, Amyloid beta-Protein Precursor, Mice, Alzheimer Disease, Medicine and Health Sciences, Animals, Humans, Amyloid Precursor Protein Secretases, Peptides
13 Research products, page 1 of 2
- 2013IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).51 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
