Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Psr1p/Psr2p, Two Plasma Membrane Phosphatases with an Essential DXDX(T/V) Motif Required for Sodium Stress Response in Yeast

Authors: Symeon Siniossoglou; Hugh R.B. Pelham; Ed Hurt;

Psr1p/Psr2p, Two Plasma Membrane Phosphatases with an Essential DXDX(T/V) Motif Required for Sodium Stress Response in Yeast

Abstract

Regulation of intracellular ion concentration is an essential function of all cells. In this study, we report the identification of two previously uncharacterized genes, PSR1 and PSR2, that perform an essential function under conditions of sodium ion stress in the yeast Saccharomyces cerevisiae. Psr1p and Psr2p are highly homologous and were identified through their homology with the endoplasmic reticulum membrane protein Nem1p. Localization and biochemical fractionation studies show that Psr1p is associated with the plasma membrane via a short amino-terminal sequence also present in Psr2p. Growth of the psr1psr2 mutant is severely inhibited under conditions of sodium but not potassium ion or sorbitol stress. This growth defect is due to the inability of the psr1psr2 mutant to properly induce transcription of ENA1/PMR2, the major sodium extrusion pump of yeast cells. We provide genetic evidence that this regulation is independent of the phosphatase calcineurin, previously implicated in the sodium stress response in yeast. We show that Psr1p contains a DXDX(T/V) phosphatase motif essential for its function in vivo and that a Psr1p-PtA fusion purified from yeast extracts exhibits phosphatase activity. Based on these data, we suggest that Psr1p/Psr2p, members of an emerging class of eukaryotic phosphatases, are novel regulators of salt stress response in yeast.

Related Organizations
Keywords

Saccharomyces cerevisiae Proteins, Base Sequence, Sequence Homology, Amino Acid, Calcineurin, Amino Acid Motifs, Cell Membrane, Molecular Sequence Data, Sodium, Membrane Proteins, Protein Sorting Signals, Phosphoprotein Phosphatases, Amino Acid Sequence, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    58
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
58
Top 10%
Top 10%
Top 10%
gold