Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ RNA Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA Biology
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA Biology
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RNA Biology
Article . 2010
versions View all 2 versions

RNAi for the large non-coding hsrω transcripts suppresses polyglutamine pathogenesis inDrosophilamodels

Authors: Moushami, Mallik; Subhash C, Lakhotia;

RNAi for the large non-coding hsrω transcripts suppresses polyglutamine pathogenesis inDrosophilamodels

Abstract

Polyglutamine diseases are a class of inherited neurodegenerative disorders, characterized by expansion of CAG trinucleotide repeats translated into elongated glutamine tracts within the mutant proteins. Overexpression of the non-coding hsromega transcripts has been shown to dominantly enhance polyQ induced cytotoxicity in Drosophila. In the present study we demonstrate that RNA interference mediated downregulation of hsromega-n transcripts is sufficient to suppress pathogenesis in several Drosophila models of human polyQ neurodegenerative diseases. Loss of hsromega-n RNA not only suppresses the eye-specific degeneration mediated by GMR-GAL4 driven expression of the 127Q or MJDtr-Q78 or ataxin1 82Q or httex1p Q93 transgene, but also rescues premature death of flies expressing the expanded polyQ proteins pan-neuronally using the elav-GAL4 driver. We further demonstrate that the morphological and functional rescue of polyQ toxicity observed upon hsromega-n RNAi is associated with substantial reduction of polyQ protein aggregation without affecting transcription of the 127Q transgene. Unlike in the polyQ expressing cells, co-expression of hsromega-n RNAi also abolishes the induction of Hsp70. These results suggest that the hsromega transcripts have a role in early stages of polyQ aggregate formation. Interestingly, hsromega-RNAi has, at best, only a marginal effect on neuropathy following overexpression of normal or mutant tau protein in flies. Functional analogues of the large non-coding hsromega transcripts in human thus appear to be promising candidates as therapeutic targets for the polyQ-mediated neurodegenerative diseases.

Related Organizations
Keywords

Cell Nucleus, RNA, Untranslated, Transcription, Genetic, Down-Regulation, Neurodegenerative Diseases, Eye, Nervous System, Disease Models, Animal, Drosophila melanogaster, Animals, Drosophila Proteins, RNA Interference, RNA, Messenger, Transgenes, Peptides, Protein Structure, Quaternary, Alleles

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 10%
gold