Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao In Silico Pharmacolo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
In Silico Pharmacology
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Structure based virtual screening of natural product molecules as glycosidase inhibitors

Authors: N S Hari Narayana, Moorthy; Natércia F, Brás; Maria J, Ramos; Pedro A, Fernandes;

Structure based virtual screening of natural product molecules as glycosidase inhibitors

Abstract

Objective of the present investigation comprised of the application of in silico methods to discover novel natural product (NP) based potential inhibitors for carbohydrate mediated diseases. Structure based drug design studies (molecular docking and structure based pharmacophore analysis) were carried out on a series of natural product compounds to identify significant bioactive molecules to inhibit α-mannosidase (I and II) and β-galactosidase enzymes. Furthermore, protein ligand interaction fingerprint analysis, molecular dynamics simulations and molecular access system (MACCS) fingerprint analysis were performed to understand the binding behaviors of the studied molecules. The results derived from these analyses showed that the identified compounds exhibit significant binding interactions with the active site residues. The compounds, NP-51, NP-81 and NP-165 have shown significant docking score against the studied enzymes (α-mannosidases-I, α-mannosidases-II and β-galactosidases). The fingerprint studies showed that the presence of rings (aromatic or aliphatic) with sulfur atoms, nitrogen atoms, methyl groups, etc. have favorable effects on the α-mannosidase II inhibitory activity. However, the presence of halogen atoms substituted in the molecules have reduced inhibitory ability against α-mannosidase II. The compound, NP-165 has significant activity against both enzymes (α-mannosidases and β-galactosidases). These studies accomplished that the compounds identified through in silico methodologies can be used to develop semisynthetic derivatives of the glycosidase inhibitors and can be screened for the treatment of different carbohydrate mediated diseases.The online version contains supplementary material available at 10.1007/s40203-021-00115-9.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average