TheArabidopsis O-LinkedN-Acetylglucosamine Transferase SPINDLY Interacts with Class I TCPs to Facilitate Cytokinin Responses in Leaves and Flowers
TheArabidopsis O-LinkedN-Acetylglucosamine Transferase SPINDLY Interacts with Class I TCPs to Facilitate Cytokinin Responses in Leaves and Flowers
AbstractO-linked N-acetylglucosamine (O-GlcNAc) modifications regulate the posttranslational fate of target proteins. The Arabidopsis thaliana O-GlcNAc transferase (OGT) SPINDLY (SPY) suppresses gibberellin signaling and promotes cytokinin (CK) responses by unknown mechanisms. Here, we present evidence that two closely related class I TCP transcription factors, TCP14 and TCP15, act with SPY to promote CK responses. TCP14 and TCP15 interacted with SPY in yeast two-hybrid and in vitro pull-down assays and were O-GlcNAc modified in Escherichia coli by the Arabidopsis OGT, SECRET AGENT. Overexpression of TCP14 severely affected plant development in a SPY-dependent manner and stimulated typical CK morphological responses, as well as the expression of the CK-regulated gene RESPONSE REGULATOR5. TCP14 also promoted the transcriptional activity of the CK-induced mitotic factor CYCLIN B1;2. Whereas TCP14-overexpressing plants were hypersensitive to CK, spy and tcp14 tcp15 double mutant leaves and flowers were hyposensitive to the hormone. Reducing CK levels by overexpressing CK OXIDASE/DEHYDROGENASE3 suppressed the TCP14 overexpression phenotypes, and this suppression was reversed when the plants were treated with exogenous CK. Taken together, we suggest that responses of leaves and flowers to CK are mediated by SPY-dependent TCP14 and TCP15 activities.
- University of Leeds United Kingdom
- University of Minnesota Morris United States
- University of Minnesota United States
- Weizmann Institute of Science Israel
- University of Minnesota System United States
Plant Leaves, Repressor Proteins, Cytokinins, Arabidopsis Proteins, Arabidopsis, Flowers, Oxidoreductases, Protein Binding, Transcription Factors
Plant Leaves, Repressor Proteins, Cytokinins, Arabidopsis Proteins, Arabidopsis, Flowers, Oxidoreductases, Protein Binding, Transcription Factors
7 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).152 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
