Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Functional role of oligomerization for bacterial and plant SWEET sugar transporter family

Authors: Yuan Hu, Xuan; Yi Bing, Hu; Li-Qing, Chen; Davide, Sosso; Daniel C, Ducat; Bi-Huei, Hou; Wolf B, Frommer;

Functional role of oligomerization for bacterial and plant SWEET sugar transporter family

Abstract

Significance SWEET sugar transporter homologs from bacteria were identified and named SemiSWEETs. They are small proteins with only three transmembrane domains (TMs); they are too small to create pores by themselves, but likely, they assemble multiple 3-TMs into a complex. SemiSWEETs are related to SWEETs, which play important roles in intercellular and interorgan sugar translocation in plants, and they are found in animals. SWEETs have fused two 3-TM units through a linker. However, SWEETs seem to be too small to transport sugars on their own. Here, we show that SWEET function requires assembly into oligomers, indicating that a pore requires at least an SWEET dimer.

Related Organizations
Keywords

Sucrose, Genetic Complementation Test, Green Fluorescent Proteins, Arabidopsis, Membrane Transport Proteins, Biological Transport, Saccharomyces cerevisiae, Models, Biological, Protein Structure, Secondary, Structure-Activity Relationship, Glucose, Bacterial Proteins, Multigene Family, Carbohydrate Metabolism, Bradyrhizobium, Amino Acids, Protein Multimerization, Phylogeny, Plant Proteins, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    252
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
252
Top 1%
Top 10%
Top 1%
bronze