SF-1 in the ventral medial hypothalamic nucleus: A key regulator of homeostasis
SF-1 in the ventral medial hypothalamic nucleus: A key regulator of homeostasis
The ventral medial hypothalamic nucleus (VMH) regulates food intake and body weight homeostasis. The nuclear receptor NR5A1 (steroidogenic factor 1; SF-1) is a transcription factor whose expression is highly restricted in the VMH and is required for the development of the nucleus. Neurons expressing SF-1 in the VMH have emerged as playing important roles in the regulation of body weight and energy homeostasis. Many of these studies have used site-specific gene KO approaches, providing insights into the molecular mechanisms underlying the regulation of energy homeostasis by the SF-1 neurons of the VMH. In this brief review, we will focus on recent studies defining the molecular mechanisms regulating energy homeostasis and body weight in the VMH, particularly stressing the SF-1 expressing neurons.
- The University of Texas Southwestern Medical Center United States
Leptin, Neurons, Integrases, Ventromedial Hypothalamic Nucleus, Animals, Homeostasis, Humans, Steroidogenic Factor 1
Leptin, Neurons, Integrases, Ventromedial Hypothalamic Nucleus, Animals, Homeostasis, Humans, Steroidogenic Factor 1
6 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).60 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
