Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Chromosomaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Chromosoma
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Chromosoma
Article . 1999 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Chromosoma
Article . 2000
versions View all 4 versions

Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF

Authors: Hart, Craig; Cuvier, Olivier; Laemmli, Ulrich Karl;

Evidence for an antagonistic relationship between the boundary element-associated factor BEAF and the transcription factor DREF

Abstract

Boundary elements interfere with communication between enhancers and promoters, but only when interposed. Understanding this activity will require identifying the proteins involved. The boundary element-associated factor BEAF is one protein that is implicated in boundary element function. Three genomic fragments (scs', BE76 and BE28) containing BEAF binding sites function as boundary elements in transgenic Drosophila, suggesting that this is an intrinsic property of the numerous genomic regions to which BEAF binds. To characterize additional proteins that interact with boundary elements, we have isolated a protein that binds to two of these boundary elements (BE76 and BE28) and have identified it as the transcription factor DREF. We present evidence that BEAF and DREF compete for binding to overlapping binding sites, and that this competition occurs in vivo. DREF is believed to regulate genes whose products are involved in DNA replication and cell proliferation, suggesting that the activation of transcription predicted to result from the displacement of BEAF by DREF might be limited to certain rapidly proliferating tissues. This is the first suggestion that the activity of a subset of boundary elements might be regulated.

Related Organizations
Keywords

570, Embryo, Nonmammalian, Transcription Factor, Fluorescent Antibody Technique, Regulatory Sequences, Nucleic Acid, Chromatography, Affinity, Chromosomes, Mice, Boundary Element, Animals, Drosophila Proteins, Deoxyribonucleases, Type II Site-Specific, Eye Proteins, Cell Proliferation, Binding Sites, Binding Site, 540, Precipitin Tests, Chromatin, DNA-Binding Proteins, Genomic Region, Cross-Linking Reagents, Drosophila, Rabbits, Transcription Factors, ddc: ddc:570, ddc: ddc:540

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    80
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
80
Top 10%
Top 10%
Top 10%
Green
bronze