Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Trends in Geneticsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Trends in Genetics
Article . 2004 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates

Authors: Elena, Torban; Christine, Kor; Philippe, Gros;

Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates

Abstract

In the past two years, studies of Stbm genes (also known as Vangl2) and the proteins that they encode in mice, flies, frogs and fish have shown that they have a crucial role in regulating planar cell polarity and convergent extension movements. Combined genetic and biochemical analyses have pointed to signaling pathways where Stbm (Vangl2) proteins might act, and have identified several interacting proteins that form a crucial multi-protein signaling complex at the membrane. These studies show that these proteins have a pivotal role in a signaling cascade(s) that has been highly conserved in evolution. This review will summarize recent findings documenting the involvement of Stbm (Vangl2) and associated proteins in planar cell polarity, non-canonical Wnt signaling and convergent extension movements.

Related Organizations
Keywords

Central Nervous System, Mice, Animals, Drosophila Proteins, Membrane Proteins, Nerve Tissue Proteins, Gastrula, Xenopus Proteins, Zebrafish Proteins, Body Patterning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    101
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
101
Top 10%
Top 10%
Top 10%