Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Endocrinologicaarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Endocrinologica
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Polymorphisms at the regulatory regions of the CASR gene influence stone risk in primary hyperparathyroidism

Authors: G. Vezzoli; A. Scillitani; S.L. Corbetta; A. Terranegra; E. Dogliotti; V. Guarnieri; T. Arcidiacono; +14 Authors

Polymorphisms at the regulatory regions of the CASR gene influence stone risk in primary hyperparathyroidism

Abstract

Background and objectiveSingle nucleotide polymorphisms (SNPs) of the calcium-sensing receptor (CASR) gene at the regulatory region were associated with idiopathic calcium nephrolithiasis. To confirm their association with nephrolithiasis, we tested patients with primary hyperparathyroidism (PHPT).DesignA genotype–phenotype association study.MethodsIn all, 332 PHPT patients and 453 healthy controls were genotyped for the rs7652589 (G>A) and rs1501899 (G>A) SNPs sited in the noncoding regulatory region of the CASR gene. Allele, haplotype, and diplotype distribution were compared between PHPT patients and controls, and in stone forming and stone-free PHPT patients.ResultsThe allele frequency at rs7652589 and rs1501899 SNPs was similar in PHPT patients and controls. The A minor alleles at these two SNPs were more frequent in stone forming (n=157) than in stone-free (n=175) PHPT patients (rs7652589: 36.9 vs 27.1%, P=0.007; rs1501899: 37.1 vs 26.4%, P=0.003). Accordingly, homozygous or heterozygous PHPT patients for the AA haplotype (n=174, AA/AA or AA/GG diplotype) had an increased stone risk (odds ratio 1.83, 95% confidence interval 1.2–2.9, P=0.008). Furthermore, these PHPT patients had higher serum concentrations of ionized calcium and parathyroid hormone (1.50±0.015 mmol/l and 183±12.2 pg/ml) than patients with the GG/GG diplotype (n=145, 1.47±0.011 mmol/l (P=0.04) and 150±11.4 pg/ml (P=0.049)). Using a logistic regression model, the increase in stone risk in PHPT patients was predicted by AA/AA or AA/GG diplotype, the highest tertile of serum ionized calcium values and the lowest tertile of age.ConclusionsPolymorphisms located in the regulatory region of the CASR gene may increase susceptibility of the PHPT patients to kidney stone production.

Keywords

Adult, Male, calcium-sensing-receptor ; R990G polymorphism ; kidney-stones ; proinflammatory cytokine ; expression ; nephrolithiasis ; transcription ; excretion ; haplotype ; elements, Genotype, 610, Hyperparathyroidism, Primary, Nephrolithiasis, Polymorphism, Single Nucleotide, Linkage Disequilibrium, Kidney Calculi, Gene Frequency, Haplotypes, Risk Factors, Humans, Female, Receptors, Calcium-Sensing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
bronze