Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Current Opinion in C...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Opinion in Cell Biology
Article . 2002 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions

The polarising role of cell adhesion molecules in early development

Authors: Doris, Wedlich;

The polarising role of cell adhesion molecules in early development

Abstract

Polarising a cell or an embryo is a crucial and recurrent event during development, as it is important for cell differentiation and migration. Cells can become polarised along their apical-basal axis and also within the plane of the tissue layer to which they belong. The embryo develops three axes: the anteroposterior, the dorsoventral and the left-right axis. Recent work indicates instructive roles for cell adhesion molecules in establishing not only apical-basal polarity but also planar cell polarity and, surprisingly, in the generation of left-right asymmetry in vertebrates. Signalling cascades that regulate polarity formation seem to be conserved among different organisms, thereby raising the intriguing question of whether this also holds true for the cell adhesion molecules.

Related Organizations
Keywords

Embryo, Nonmammalian, Xenopus, Models, Biological, Cell Adhesion, Animals, Drosophila, Caenorhabditis elegans, Cell Adhesion Molecules, Body Patterning, Developmental Biology, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Average
Average
Top 10%