Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Bioscience Biotechno...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Bioscience Biotechnology and Biochemistry
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Gender Difference in ICER Iγ Transgenic Diabetic Mouse

Authors: Akari, Inada; Hidenori, Arai; Kojiro, Nagai; Jun-ichi, Miyazaki; Yuichiro, Yamada; Yutaka, Seino; Atsushi, Fukatsu;

Gender Difference in ICER Iγ Transgenic Diabetic Mouse

Abstract

Few studies have been done to examine gender differences in diabetic mouse models. Here we examined a gender difference in Inducible cAMP Early Repressor (ICER) transgenic (Tg) mice, a diabetic mouse model. Longitudinal changes in diabetes and nephropathy were investigated in male and female Tg mice. Both male and female Tg mice developed severe diabetes early in life due to severely impaired insulin synthesis and decreased beta-cell numbers, but only female Tg mice became less hyperglycemic later in life, and most female Tg mice did not develop diabetic nephropathy. Even some female Tg mice that remained hyperglycemic showed less renal expansion than age-matched male Tg mice. Thus the gender difference in the severity of diabetes and diabetic nephropathy was evident with age in this model. This study indicates that sex hormones may play a role in glucose metabolism in diabetic conditions.

Keywords

Male, Age Factors, Mice, Transgenic, Diabetes Mellitus, Experimental, Cyclic AMP Response Element Modulator, Mice, Glucose, Sex Factors, Gene Expression Regulation, Models, Animal, Animals, Diabetic Nephropathies, Female, Gonadal Steroid Hormones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Average
bronze