Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2000 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Open Access Repository
Article . 2000
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions

Mammalian 5′(3′)-Deoxyribonucleotidase, cDNA Cloning, and Overexpression of the Enzyme in Escherichia coli and Mammalian Cells

Authors: Vera Bianchi; Magnus Johansson; Peter Reichard; Peter Reichard; Paola Ferraro; Anna Karlsson; Chiara Rampazzo; +3 Authors

Mammalian 5′(3′)-Deoxyribonucleotidase, cDNA Cloning, and Overexpression of the Enzyme in Escherichia coli and Mammalian Cells

Abstract

5'(3')-Deoxyribonucleotidase is a ubiquitous enzyme in mammalian cells whose physiological function is not known. It was earlier purified to homogeneity from human placenta. We determined the amino acid sequences of several internal peptides and with their aid found an expressed sequence tag clone with the complete cDNA for a murine enzyme of 23.9 kDa. The DNA was cloned into appropriate plasmids and introduced into Escherichia coli and ecdyson-inducible 293 and V79 cells. The recombinant enzyme was purified to homogeneity from transformed E. coli and was found to be identical with the native enzyme. After induction with ponasterone, the transfected mammalian cells showed a gradual increase of enzyme activity. A human expressed sequence tag clone contained a large part of the cDNA of the human enzyme but lacked the 5'-end corresponding to 51 amino acids of the murine enzyme. Several polymerase chain reaction-based approaches to find this sequence met with no success. A mouse/human hybrid cDNA that had substituted the missing human 5'-end with the corresponding mouse sequence coded for a fully active enzyme.

Keywords

DNA, Complementary, Placenta, Molecular Sequence Data, Biochemistry, Cell Line, Mice, Nucleotidases, Cricetinae, Escherichia coli, Animals, Humans, Amino Acid Sequence, Cloning, Molecular, Molecular Biology, 5'-Nucleotidase, Base Sequence, Phosphotransferases, Cell Biology, Fibroblasts, Blotting, Northern, Kinetics, Ecdysterone, Enzyme Induction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    59
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
59
Average
Top 10%
Top 10%
Green
gold