Generative pretraining from large-scale transcriptomes for single-cell deciphering
Generative pretraining from large-scale transcriptomes for single-cell deciphering
Exponential accumulation of single-cell transcriptomes poses great challenge for efficient assimilation. Here, we present an approach entitled generative pretraining from transcriptomes (tGPT) for learning feature representation of transcriptomes. tGPT is conceptually simple in that it autoregressive models the ranking of a gene in the context of its preceding neighbors. We developed tGPT with 22.3 million single-cell transcriptomes and used four single-cell datasets to evalutate its performance on single-cell analysis tasks. In addition, we examine its applications on bulk tissues. The single-cell clusters and cell lineage trajectories derived from tGPT are highly aligned with known cell labels and states. The feature patterns of tumor bulk tissues learned by tGPT are associated with a wide range of genomic alteration events, prognosis, and treatment outcome of immunotherapy. tGPT represents a new analytical paradigm for integrating and deciphering massive amounts of transcriptome data and it will facilitate the interpretation and clinical translation of single-cell transcriptomes.
- Tianjin Medical University China (People's Republic of)
- Tianjin Medical University Cancer Institute and Hospital China (People's Republic of)
Science, Q, Automation in bioinformatics, Transcriptomics, Article, Data processing in systems biology
Science, Q, Automation in bioinformatics, Transcriptomics, Article, Data processing in systems biology
11 Research products, page 1 of 2
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
- IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).31 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
