Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Microbiolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Microbiology
Article . 1992 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Peroxisome biogenesis in yeast

Authors: J D, Aitchison; W M, Nuttley; R K, Szilard; A M, Brade; J R, Glover; R A, Rachubinski;
Abstract

SummaryEukaryotic cells have evolved a complex set of intracellular organelles, each of which possesses a specific complement of enzymes and performs unique metabolic functions. This compartmentalization of cellular functions provides a level of metabolic control not available to prokaryotes. However, it presents the eukaryotic cell with the problem of targeting proteins to their specific location (s). Proteins must be efficiently transported from their site of synthesis in the cytosol to their specific organelle (s). Such a process may require translocation across one or more hydrophobic membrane barriers and/or asymmetric integration into specific membranes.Proteins carry cis‐acting amino acid sequences that serve to act as recognition motifs for protein sorting and for the cellular translocation machinery. Sequences that target proteins to the endoplasmic reticulum/ secretory pathway, mitochondria, and chloroplasts are often present as cleavable amino‐terminal extensions. In contrast, most peroxisomal proteins are synthesized at their mature size and are translocated to the organelle without any post‐translational modification. This review will summarize what is known about how yeast solve the problem of specifically importing proteins into peroxisomes and will suggest future directions for investigations into peroxisome biogenesis in yeast.

Related Organizations
Keywords

Fungal Proteins, Molecular Sequence Data, Morphogenesis, Biological Transport, Amino Acid Sequence, Saccharomyces cerevisiae, Microbodies, Cell Compartmentation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Average
Top 10%
Top 10%
bronze