Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 1989 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Transcriptional Regulatory Sequences of the Housekeeping Gene for Human Triosephosphate Isomerase

Authors: T G, Boyer; J R, Krug; L E, Maquat;

Transcriptional Regulatory Sequences of the Housekeeping Gene for Human Triosephosphate Isomerase

Abstract

To examine the functional organization of the human triosephosphate isomerase (TPI) promoter, deletion, insertion, and linker scanning mutations were introduced into the TPI promoter of hybrid TPI/beta-globin genes. These genes were transiently expressed in mouse L and human HeLa cells, and the effect of each mutation on the frequency and position of transcription initiation was assayed by S1 nuclease transcript mapping. Multiple positive regulatory elements reside between positions -595 and +1 in L cells and -920 and -7 in HeLa cells and coordinately promote maximum hybrid gene transcription. These elements include an array of GC boxes (positions -126 to -48) that variably conform to the consensus Sp1-binding site, and a canonical TATA box (positions -27 to -21) that is essential for detectable levels of transcription. In an additive yet position-dependent fashion, the GC boxes function in cis to the TATA box to control both the frequency and position of transcription initiation. Additional positive elements reside upstream of position -131 and are required for full promoter function. Also, an inhibitory element(s) residing between position -7200 and either -2800 in L cells or -920 in HeLa cells reduces transcription approximately 7-fold relative to the level of transcription achieved with the maximally active promoter.

Related Organizations
Keywords

Base Sequence, Transcription, Genetic, Molecular Sequence Data, Regulatory Sequences, Nucleic Acid, Globins, Mice, L Cells, Genes, Mutation, Genes, Synthetic, Animals, Humans, Chromosome Deletion, Carbohydrate Epimerases, Promoter Regions, Genetic, HeLa Cells, Triose-Phosphate Isomerase

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    52
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
52
Average
Top 10%
Top 10%
gold