Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article . 2012 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Cell
Article
Data sources: UnpayWall
The Plant Cell
Article . 2013
versions View all 2 versions

PSBP-DOMAIN PROTEIN1, a Nuclear-Encoded Thylakoid Lumenal Protein, Is Essential for Photosystem I Assembly in Arabidopsis

Authors: Jun, Liu; Huixia, Yang; Qingtao, Lu; Xiaogang, Wen; Fan, Chen; Lianwei, Peng; Lixin, Zhang; +1 Authors

PSBP-DOMAIN PROTEIN1, a Nuclear-Encoded Thylakoid Lumenal Protein, Is Essential for Photosystem I Assembly in Arabidopsis

Abstract

Abstract To gain insights into the molecular details of photosystem I (PSI) biogenesis, we characterized the PsbP-domain protein1 (ppd1) mutant of Arabidopsis thaliana that specifically lacks PSI activity. Deletion of PPD1 results in an inability of the mutant to grow photoautotrophically and a specific loss of the stable PSI complex. Unaltered transcription and translation of plastid-encoded PSI genes indicate that PPD1 acts at the posttranslational level. In vivo protein labeling experiments reveal that the rate of synthesis of PSI reaction center proteins PsaA/B in ppd1 is comparable to that of wild-type plants, whereas the rate of turnover of PsaA/B proteins is higher in ppd1 than in wild-type plants. With increasing leaf age, PPD1 content decreases considerably, while PSI content remains constant. PPD1 is a nuclear-encoded thylakoid lumenal protein and is associated with PSI but is not an integral subunit of PSI. Biochemical and molecular analyses reveal that PPD1 interacts directly and specifically with PsaB and PsaA. Yeast two-hybrid experiments show that PPD1 interacts with some lumenal loops of PsaB and PsaA. Our results suggest that PPD1 is a PSI assembly factor that assists the proper folding and integration of PsaB and PsaA into the thylakoid membrane.

Related Organizations
Keywords

Photosystem I Protein Complex, Arabidopsis Proteins, Arabidopsis, Thylakoids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 1%
Top 10%
Top 10%
hybrid