Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2007
versions View all 2 versions

Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers

Authors: Siddhartha, Kanrar; Ouma, Onguka; Harley M S, Smith;

Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers

Abstract

In flowering plants, post-embryonic development is mediated by the activity of shoot and root apical meristems. Shoot architecture results from activity of the shoot apical meristem (SAM), which initiates primordia, including leaves, internodes and axillary meristems, repetitively from its flanks. Axillary meristems can develop into secondary shoots or flowers. In Arabidopsis, two paralogous BEL1-like (BELL) homeobox genes, PENNYWISE (PNY) and POUND-FOOLISH (PNF), expressed in the SAM, encode DNA-binding proteins that are essential for specifying floral primordia and establishing early internode patterning events during inflorescence development. Biochemical studies show that PNY associates with the knotted1-like homeobox (KNOX) proteins, SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP). PNY-BP heterodimers are essential for establishing early internode patterning events, while PNY-STM heterodimers are critical for SAM function. In this report, we examined the role of PNY, PNF and STM during development. First, we show that PNF interacts with STM and BP indicating that PNY and PNF are redundant functioning proteins. Inflorescence development, but not vegetative development, is sensitive to the dosage levels of PNY, PNF and STM. Characterization of stm-10, a weak allele in the Columbia ecotype, indicates that STM is also involved in floral specification and internode development. Our examination of the genetic requirements for PNY, PNF and STM demonstrates that these KNOX-BELL heterodimers control floral specification, internode patterning and the maintenance of boundaries between initiating floral primordia and the inflorescence meristem.

Keywords

Homeodomain Proteins, Meristem, Arabidopsis, Gene Dosage, Protein Structure, Quaternary, Flowering Tops

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    91
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
91
Top 10%
Top 10%
Top 10%