Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmentarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
Development
Article . 2004 . Peer-reviewed
Data sources: Crossref
Development
Article . 2004
versions View all 2 versions

Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation

Authors: Sarah E, Cheesman; Michael J, Layden; Tonia, Von Ohlen; Chris Q, Doe; Judith S, Eisen;

Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation

Abstract

Genes belonging to the Nkx, Gsh and Msx families are expressed in similar dorsovental spatial domains of the insect and vertebrate central nervous system (CNS), suggesting the bilaterian ancestor used this genetic program during CNS development. We have investigated the significance of these similar expression patterns by testing whether Nkx6 proteins expressed in ventral CNS of zebrafish and flies have similar functions. In zebrafish, Nkx6.1 is expressed in early-born primary and later-born secondary motoneurons. In the absence of Nkx6.1, there are fewer secondary motoneurons and supernumerary ventral interneurons, suggesting Nkx6.1 promotes motoneuron and suppresses interneuron formation. Overexpression of fish or fly Nkx6 is sufficient to generate supernumerary motoneurons in both zebrafish and flies. These results suggest that one ancestral function of Nkx6 proteins was to promote motoneuron development.

Related Organizations
Keywords

Central Nervous System, Homeodomain Proteins, Motor Neurons, Molecular Sequence Data, Gene Expression Regulation, Developmental, Drosophila melanogaster, Interneurons, Trans-Activators, Animals, Drosophila Proteins, Humans, Hedgehog Proteins, Amino Acid Sequence, Sequence Alignment, Conserved Sequence, Phylogeny, Zebrafish, Body Patterning, Signal Transduction, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%
bronze