SUBSTITUTION OF DRINKING WATER BY FRUCTOSE SOLUTION INDUCES HYPERINSULINEMIA AND HYPERGLYCEMIA IN HAMSTERS
pmid: 17589675
SUBSTITUTION OF DRINKING WATER BY FRUCTOSE SOLUTION INDUCES HYPERINSULINEMIA AND HYPERGLYCEMIA IN HAMSTERS
To test the possibility of obtaining a practical and stable model of hyperinsulinemia and hyperglycemia in hamsters, substituting the drinking water by 10% or 20% fructose solutions for a period of 2, 4, or 6 months.Male hamsters were divided into 3 main groups, further divided in 3 subgroups: Two months: Group Ia control (n = 51) received filtered water, Group Ib (n = 49) received 10% fructose solution instead of water, Group Ic (n=8) received 20% fructose solution instead of water. Four months: Group IIa control (n=8), Group IIb 10% fructose (n = 7), Group IIc 20% fructose (FIIc, n = 7). Six months: Group IIIa control (n = 6), Group IIIb 10% Fructose (n = 6), Group IIIc 20% Fructose (n = 5). All groups were fed with the same laboratory diet. The animals were weighed every 2 weeks during the study period. On the final day of each experiment (61st, 121st, and 181st day after the beginning of the study, respectively), the animals were weighed and anesthetized for blood collection to determine plasma glucose and insulin after at least a 12-h fast. Ten animals of group Ia and 10 of group Ib were evaluated to determine changes in macromolecular permeability induced by ischemia/reperfusion as measured in the cheek pouch microcirculation.Compared to controls, the animals that drank the 10% or 20% fructose solution had significantly greater weight gain (P < .001), fasting plasma glucose (P < .001) Reperfusion, after 30 min ischemia, resulted in an immediate but reversible increase in postcapillary leakage (L) of 89.0 +/- 2.0 L/cm(2) (group Ia - controls), and 116.5 +/- 4.8 L/cm(2) (group Ib 10% fructose), P < .001. These results suggest that chronic administration of either 10% or 20% fructose solutions could be used to experimentally induce a stable hamster model of hyperinsulinemia and hyperglycemia.The model might facilitate the study of basic mechanisms of hyperglycemia and hyperinsulinemia affecting the microvasculature as demonstrated by the findings regarding ischemia/reperfusion after only 2 months of treatment.
Male, Time Factors, Mesocricetus, Body Weight, Experimental animal model, Fructose, Insulinemia, Disease Models, Animal, Fructose solution, Cricetinae, Hyperglycemia, Hyperinsulinism, Hamster, Animals, Glicemia, Solução de frutose, Modelo experimental
Male, Time Factors, Mesocricetus, Body Weight, Experimental animal model, Fructose, Insulinemia, Disease Models, Animal, Fructose solution, Cricetinae, Hyperglycemia, Hyperinsulinism, Hamster, Animals, Glicemia, Solução de frutose, Modelo experimental
4 Research products, page 1 of 1
- 2013IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).28 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
