Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Experimental Hematol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Development
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Experimental Hematology
Article . 2013 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development
Article . 2014 . Peer-reviewed
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BOA - Bicocca Open Archive
Other literature type . 2013
Development
Article . 2014
versions View all 12 versions

Hemogenic endothelium generates mesoangioblasts that contribute to several mesodermal lineages in vivo

Authors: AZZONI, EMANUELE; CONTI, VALENTINA; Campana, L; Dellavalle, A; Adams, R; Cossu, G; BRUNELLI, SILVIA;

Hemogenic endothelium generates mesoangioblasts that contribute to several mesodermal lineages in vivo

Abstract

The embryonic endothelium is a known source of hematopoietic stem cells. Moreover, vessel-associated progenitors/stem cells with multilineage mesodermal differentiation potential, such as the ‘embryonic mesoangioblasts’, originate in vitro from the endothelium. Using a genetic lineage tracing approach, we show that early extra-embryonic endothelium generates, in a narrow time-window and prior to the hemogenic endothelium in the major embryonic arteries, hematopoietic cells that migrate to the embryo proper, and are subsequently found within the mesenchyme. A subpopulation of these cells, distinct from embryonic macrophages, co-expresses mesenchymal and hematopoietic markers. In addition, hemogenic endothelium-derived cells contribute to skeletal and smooth muscle, and to other mesodermal cells in vivo, and display features of embryonic mesoangioblasts in vitro. Therefore, we provide new insights on the distinctive characteristics of the extra-embryonic and embryonic hemogenic endothelium, and we identify the putative in vivo counterpart of embryonic mesoangioblasts, suggesting their identity and developmental ontogeny.

Keywords

Hemangioblasts, Mice, Transgenic, Research Support, Models, Biological, Transgenic, Mesoderm, Mice, Genetic, Models, Receptors, Journal Article, Animals, Cell Lineage, Non-U.S. Gov't, Muscle, Skeletal, Molecular Biology, Recombination, Genetic, Integrases, Research Support, Non-U.S. Gov't, Mammalian, Macrophages, VE-Cadherin; Muscle; Mesoangioblasts; Mouse; Hemogenic endothelium, Muscle, Smooth, Skeletal, Complement 3b, Biological, Cadherins, Embryo, Mammalian, Hematopoietic Stem Cells, Recombination, hemogenic endothelium, mesoangioblasts, Gene Expression Regulation, Embryo, Hemogenic endothelium; Mesoangioblasts; Mouse; Muscle; VE-Cadherin;, Receptors, Complement 3b, Muscle, Smooth, Biomarkers, Developmental Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 16
  • 3
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
30
Top 10%
Top 10%
Top 10%
3
16
Green
bronze