Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Human Molecular Gene...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Human Molecular Genetics
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis

Authors: Silvia Cereghini; Silvia Cereghini; Silvia Cereghini; Mélanie Paces-Fessy; Céline Lesaulnier; Céline Lesaulnier; Céline Lesaulnier; +3 Authors

Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis

Abstract

The transcription factors HNF1B and Pax2, co-expressed in the Wolffian duct and ureteric bud epithelia, play essential roles during the early steps of mouse kidney development. In humans, heterozygous mutations in these genes display a number of common kidney phenotypes, including hypoplasia and multicystic hypoplastic kidneys. Moreover, a high prevalence of mutations either in HNF1B or PAX2 has been observed in children with renal hypodysplasia. To gain a better understanding of Hnf1b and Pax2 interactions in vivo, we generated compound heterozygous mice for Hnf1b and Pax2 null alleles. We show here that compound heterozygous mutants display phenotypes similar to severe congenital anomalies of the kidney and the urinary tract (CAKUT), including strong hypoplasia of the kidneys, caudal ectopic aborted ureter buds, duplex kidneys, megaureters and hydronephrosis. At a molecular level, compound mutants show a delay in nephron segment and medullar interstitial differentiation, increased apoptosis and a transient decrease in Lim1 and Wnt4 expression. We also observe a perturbation of smooth muscle differentiation around the ureter associated with a local down-regulation in transcript levels of Bmp4 and Tbx18, two key regulators involved in ureter smooth muscle formation, thus explaining, at least in part, megaureters. These results together uncover a novel role of Hnf1b as a modifier of the Pax2 haplo-insufficient phenotype and show that these two transcription factors operate in common pathways governing both kidney morphogenesis and ureter differentiation. This mouse model should provide new insights into the pathogenic mechanisms of human CAKUT, the most frequent developmental defect identified in newborns.

Keywords

Male, Mice, Knockout, PAX2 Transcription Factor, Kidney, Mice, Inbred C57BL, Disease Models, Animal, Mice, [SDV.BDD] Life Sciences [q-bio]/Development Biology, Morphogenesis, Animals, Humans, Ureteral Diseases, Female, Kidney Diseases, Ureter, Hepatocyte Nuclear Factor 1-beta

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Top 10%
Top 10%
Top 10%
bronze