Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 1994 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 1994
versions View all 2 versions

Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.

Authors: L G, Vallier; M, Carlson;

Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.

Abstract

Abstract In the yeast Saccharomyces cerevisiae, glucose repression of SUC2 transcription requires the SSN6-TUP1 repressor complex. It has been proposed that the DNA-binding protein MIG1 secures SSN6-TUP1 to the SUC2 promoter. Here we show that a mig1 deletion does not cause nearly as dramatic a loss of repression as ssn6: glucose-grown mig1 mutants display 20-fold lower SUC2 expression than ssn6 mutants. Thus, repression by SSN6-TUP1 is not mediated solely by MIG1, but also involves MIG1-independent mechanisms. We report that mig1 partially restores SUC2 expression in mutants lacking the SNF1 protein kinase and show that mig1 is allelic to ssn1, a mutation selected as a suppressor of snf1. Other SSN genes identified in this selection were therefore candidates for a role in repression of SUC2. We show that mig1 acts synergistically with ssn2 through ssn5, ssn7, and ssn8 to relieve glucose repression of SUC2 and to suppress the requirement for SNF1. These findings indicate that the SSN proteins contribute to repression of SUC2, and the pleiotropic phenotypes of the ssn mutants suggest global roles in repression. Finally, the regulated SUC2 expression observed in snf1 mig1 mutants indicates that signals regarding glucose availability can be transmitted independently of the SNF1 protein kinase.

Related Organizations
Keywords

DNA-Binding Proteins, Fungal Proteins, Repressor Proteins, Glucose, Saccharomyces cerevisiae Proteins, Gene Expression Regulation, Fungal, Mutation, Nuclear Proteins, Saccharomyces cerevisiae, Protein Serine-Threonine Kinases

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    98
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
98
Top 10%
Top 10%
Top 1%
hybrid