Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Exper...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Journal of Experimental Medicine
Article
License: CC BY NC SA
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2012
Data sources: PubMed Central
The Journal of Experimental Medicine
Article . 2011 . Peer-reviewed
Data sources: Crossref
The Journal of Experimental Medicine
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 5 versions

Local microbleeding facilitates IL-6– and IL-17–dependent arthritis in the absence of tissue antigen recognition by activated T cells

Authors: Murakami, Masaaki; Okuyama, Yuko; Ogura, Hideki; Asano, Shogo; Arima, Yasunobu; Tsuruoka, Mineko; Harada, Masaya; +6 Authors

Local microbleeding facilitates IL-6– and IL-17–dependent arthritis in the absence of tissue antigen recognition by activated T cells

Abstract

Cognate antigen recognition by CD4+ T cells is thought to contribute to the tissue specificity of various autoimmune diseases, particularly those associated with class II MHC alleles. However, we show that localized class II MHC–dependent arthritis in F759 mice depends on local events that result in the accumulation of activated CD4+ T cells in the absence of cognate antigen recognition. In this model, transfer of in vitro polarized Th17 cells combined with the induction of experimental microbleeding resulted in CCL20 production, the accumulation of T cells in the joints, and local production of IL-6. Disease induction required IL-17A production by transferred T cells, IL-6 and CCL20 expression, and STAT3 signaling in type I collagen–expressing cells. Our data suggest a model in which the development of autoimmune disease in F759 mice depends on four events: CD4+ T cell activation regardless of antigen specificity, local events that induce T cell accumulation, enhanced sensitivity to T cell–derived cytokines in the tissue, and activation of IL-6 signaling in the tissue. This model provides a possible explanation for why tissue-specific antigens recognized by activated CD4+ T cells have not been identified in many autoimmune diseases, especially those associated with class II MHC molecules.

Keywords

Interleukin-6, Arthritis, T-Lymphocytes, Interleukin-17, Correction, Hemorrhage, Lymphocyte Activation, Article, Mice, Animals, Th17 Cells, Antigens, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    86
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
86
Top 10%
Top 10%
Top 1%
Green
hybrid