Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao FEBS Journalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
FEBS Journal
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
FEBS Journal
Article . 2020
versions View all 2 versions

Functional analysis of natural PCSK9 mutants in modern and archaic humans

Authors: Sepideh Mikaeeli; Delia Susan‐Resiga; Emmanuelle Girard; Ali Ben Djoudi Ouadda; Robert Day; Stefan Prost; Nabil G. Seidah;

Functional analysis of natural PCSK9 mutants in modern and archaic humans

Abstract

PCSK9 is the last member of the proprotein convertases (PCs) family and its gene is mutated in ~ 2% to 3% of individuals with familial hypercholesterolemia (FH). This protein enhances the degradation of the low‐density lipoprotein receptor (LDLR) and hence increases the levels of circulating LDL‐cholesterol (LDLc). Studies of the underlying mechanism(s) regulating the activity of different mutations in the PCSK9 gene are ongoing as they enhance our understanding of the biology and clinical relevance of PCSK9 and its partners. In an attempt to unravel the regulation of PCSK9 transcription and possibly identify mutation ‘hot spot’ regions with alterations in CpG methylation, we present for the first time the complete methylome profile of the PCSK9 gene in modern and archaic humanoids. Our data showed that the genomes of modern humans and archaic PCSK9 exhibit a similar methylation pattern. Next, we defined the mechanistic consequences of three PCSK9 natural mutations (PCSK9‐R96L, ‐R105W, and ‐P174S) and one archaic Denisovan mutation (PCSK9‐H449L) using various complementary cellular and in vitro binding assays. Our results showed that the PCSK9‐H449L is a loss‐of‐function (LOF) mutation, likely due to its lower binding affinity to the LDLR. Similarly, PCSK9‐R96L and ‐R105W are LOF mutations, even though they have been identified in FH patients. The PCSK9‐R105W mutation leads to a significantly lower autocatalytic processing of proPCSK9. PCSK9‐P174S resulted in a LOF in both extracellular and intracellular pathways. In conclusion, our extensive analyses revealed that all studied mutations result in PCSK9 LOF, via various mechanisms, leading to lower levels of LDLc.

Keywords

Binding Sites, Receptors, LDL, Loss of Function Mutation, Animals, Humans, DNA Methylation, Proprotein Convertase 9, Neanderthals, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Average