Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao American Journal of ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
American Journal of Medical Genetics Part B Neuropsychiatric Genetics
Article . 2007 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia

Authors: Zoran, Brkanac; Nicola H, Chapman; Mark M, Matsushita; Lani, Chun; Kathleen, Nielsen; Elizabeth, Cochrane; Virginia W, Berninger; +2 Authors

Evaluation of candidate genes for DYX1 and DYX2 in families with dyslexia

Abstract

AbstractDyslexia is a common heterogeneous disorder with a significant genetic component. Multiple studies have replicated the evidence for linkage between variously defined phenotypes of dyslexia and chromosomal regions on 15q21 (DYX1) and 6p22.2 (DYX2). Based on association studies and the possibility for functional significance of several polymorphisms, candidate genes responsible for the observed linkage signal have been proposed—DYX1C1 for 15q21, and KIAA0319 and DCDC2 for 6p22.2. We investigated the evidence for contribution of these candidate genes to dyslexia in our sample of multigenerational families. Our previous quantitative linkage analyses in this dataset provided supportive evidence for linkage of dyslexia to the locus on chromosome 15, but not to the locus on chromosome 6. In the current study, we used probands from 191 families for a case control analysis, and proband‐parent trios for family‐based TDT analyses. The observation of weak evidence for transmission disequilibrium for one of the two studied polymorphisms in DYX1C1 suggests involvement of this gene in dyslexia in our dataset. We did not find evidence for the association of KIAA0319 or DCDC2 alleles to dyslexia in our sample. We observed a slight tendency for an intronic deletion in DCDC2 to be associated with worse performance on some quantitative measures of dyslexia in the probands in our sample, but not in their parents. © 2007 Wiley‐Liss, Inc.

Related Organizations
Keywords

Chromosomes, Human, Pair 15, Genotype, Nuclear Proteins, Nerve Tissue Proteins, Polymorphism, Single Nucleotide, Dyslexia, Cytoskeletal Proteins, Humans, Chromosomes, Human, Pair 6, Family, Child, Microtubule-Associated Proteins, Alleles, Gene Deletion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    79
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
79
Top 10%
Top 10%
Top 10%