Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 1999 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences

Authors: L, Gaudreau; M, Keaveney; J, Nevado; Z, Zaman; G O, Bryant; K, Struhl; M, Ptashne;

Transcriptional activation by artificial recruitment in yeast is influenced by promoter architecture and downstream sequences

Abstract

The idea that recruitment of the transcriptional machinery to a promoter suffices for gene activation is based partly on the results of “artificial recruitment” experiments performed in vivo . Artificial recruitment can be effected by a “nonclassical” activator comprising a DNA-binding domain fused to a component of the transcriptional machinery. Here we show that activation by artificial recruitment in yeast can be sensitive to any of three factors: position of the activator-binding elements, sequence of the promoter, and coding sequences downstream of the promoter. In contrast, classical activators worked efficiently at all promoters tested. In all cases the “artificial recruitment” fusions synergized well with classical activators. A classical activator evidently differs from a nonclassical activator in that the former can touch multiple sites on the transcriptional machinery, and we propose that that difference accounts for the broader spectrum of activity of the typical classical activator. A similar conclusion is reached from studies in mammalian cells in the accompanying paper [Nevado, J., Gaudreau, L., Adam, M. & Ptashne, M. (1999) Proc. Natl. Acad. Sci. USA 96, 2674–2677].

Related Organizations
Keywords

Transcriptional Activation, Gene Expression Regulation, Fungal, Saccharomyces cerevisiae, Promoter Regions, Genetic

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
bronze