Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2010 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Sarco(endo)plasmic reticulum Ca 2+ -ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity

Authors: Sang Won, Park; Yingjiang, Zhou; Jaemin, Lee; Justin, Lee; Umut, Ozcan;

Sarco(endo)plasmic reticulum Ca 2+ -ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity

Abstract

Increased endoplasmic reticulum (ER) stress is one of the central mechanisms that lead to dysregulated metabolic homeostasis in obesity. It is thus crucial to understand the underpinnings of the mechanisms that lead to the development of ER stress. A high level of ER Ca 2+ is imperative for maintenance of normal ER function and this high Ca 2+ concentration of ER is maintained by sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA). Here, we show that SERCA2b protein and mRNA levels are dramatically reduced in the liver of obese mice and restoration of SERCA2b in the liver of obese and diabetic mice alleviates ER stress, increases glucose tolerance, and significantly reduces the blood glucose levels. Furthermore, overexpression of SERCA2b in the liver of obese mice significantly reduces the lipogenic gene expression and the triglyceride content in the liver. Our results document the importance of SERCA2b in dysregulated glucose and lipid homeostasis in the liver of obese mice and suggest development of drugs to increase SERCA2b activity for treatment of type 2 diabetes and nonalcoholic steatohepatitis.

Related Organizations
Keywords

Blood Glucose, Endoplasmic Reticulum, Lipid Metabolism, Sarcoplasmic Reticulum Calcium-Transporting ATPases, Fatty Liver, Mice, Liver, Stress, Physiological, Glucose Intolerance, Diabetes Mellitus, Animals, Homeostasis, Obesity

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    213
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
213
Top 1%
Top 10%
Top 1%
bronze