Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Proceedings of the N...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Proceedings of the National Academy of Sciences
Article . 2009 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO

Authors: Osman D; Gobert V; Ponthan FM; Heidenreich O; Haenlin M; Waltzer L;

A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO

Abstract

The t(8:21)(q22;q22) translocation is 1 of the most common chromosomal abnormalities linked to acute myeloid leukemia (AML). AML1-ETO, the product of this translocation, fuses the N-terminal portion of the RUNX transcription factor AML1 (also known as RUNX1), including its DNA-binding domain, to the almost entire transcriptional corepressor ETO (also known as MTG8 or RUNX1T1). This fusion protein acts primarily by interfering with endogenous AML1 function during myeloid differentiation, although relatively few genes are known that participate with AML1-ETO during leukemia progression. Here, we assessed the consequences of expressing this chimera in Drosophila blood cells. Reminiscent of what is observed in AML, AML1-ETO specifically inhibited the differentiation of the blood cell lineage whose development depends on the RUNX factor Lozenge (LZ) and induced increased numbers of LZ + progenitors. Using an in vivo RNAi-based screen for suppressors of AML1-ETO, we identified calpainB as required for AML1-ETO-induced blood cell disorders in Drosophila . Remarkably, calpain inhibition triggered AML1-ETO degradation and impaired the clonogenic potential of the human t(8;21) leukemic blood cell line Kasumi-1. Therefore Drosophila provides a promising genetically tractable model to investigate the conserved basis of leukemogenesis and to open avenues in AML therapy.

Keywords

Blood Cells, Oncogene Proteins, Fusion, Calpain, Stem Cells, Cell Count, Cell Differentiation, Cell Line, Colony-Forming Units Assay, DNA-Binding Proteins, Drosophila melanogaster, RUNX1 Translocation Partner 1 Protein, Core Binding Factor Alpha 2 Subunit, Models, Animal, Animals, Drosophila Proteins, Humans, Cell Lineage, Genetic Testing, Genes, Suppressor, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    49
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
49
Top 10%
Top 10%
Top 10%
bronze