Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Genetics and Molecul...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics and Molecular Research
Article . 2015 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Polymorphic variations in manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) genes contribute to the development of type 2 diabetes mellitus in the Chinese Han population

Authors: J Y, Li; F, Tao; X X, Wu; Y Z, Tan; L, He; H, Lu;

Polymorphic variations in manganese superoxide dismutase (MnSOD) and endothelial nitric oxide synthase (eNOS) genes contribute to the development of type 2 diabetes mellitus in the Chinese Han population

Abstract

Impaired antioxidant defense increases the oxidative stress and contributes to the development of type 2 diabetes mellitus (T2DM). MnSOD and eNOS are important antioxidant enzymes. This aim of this study was to verify the association of MnSOD and eNOS tagSNPs with T2DM in a Chinese Han population. Four tagSNPs of MnSOD and eight tagSNPs of eNOS were detected using TaqMan technology in 1272 healthy controls and 1234 T2DM patients. All study participants were unrelated members of the Han ethnic group in China. In this study, the frequency of the rs4880 MnSOD single nucleotide polymorphisms (SNP) genotype differed significantly between T2DM patients and controls [allele: P = 0.03, genotype: P = 0.04, odd's ratio (OR) = 1.26; 95% confidence interval (CI) = 1.07-1.49]. The A-T haplotype and G-T haplotype remained significant in T2DM after Bonferroni correction (P = 1.58 x 10(-6) and 8.00 x 10(-4), respectively) with a global p-value of 7.25 x 10(-8). The rs1799983 and rs891512 SNPs of eNOS differed significantly between T2DM patients and controls [rs1799983: corrected allele: P = 2.10 x 10(-3), corrected genotype: P = 6.30 x 10(-3), OR = 1.43 (95%CI = 1.18-1.73); rs891512, corrected allele: P = 3.50 x 10(-3), corrected genotype: P = 9.10 x 10(-3), OR = 1.70 (95%CI = 1.26-2.30)]. Following Bonferroni correction, none of the haplotypes of eNOS were significant in T2DM. These results indicate that common variants in MnSOD and eNOS increased the risk of T2DM in the Chinese Han population.

Keywords

Adult, Male, Genotype, Nitric Oxide Synthase Type III, Superoxide Dismutase, Middle Aged, Polymorphism, Single Nucleotide, Asian People, Diabetes Mellitus, Type 2, Gene Frequency, Haplotypes, Humans, Female, Genetic Predisposition to Disease, Aged

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Average
Top 10%
gold