Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
International Journal of Developmental Neuroscience
Article . 2002 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Influence of neurotrophins on the synaptogenesis of inner hair cells in the deaf Bronx waltzer (bv) mouse organ of Corti in culture

Authors: Benjamin K. August; Hanna M. Sobkowicz; S. M. Slapnick;

Influence of neurotrophins on the synaptogenesis of inner hair cells in the deaf Bronx waltzer (bv) mouse organ of Corti in culture

Abstract

AbstractThe Bronx waltzer (bv) deaf mouse is characterized by massive degeneration of the primary auditory receptors, the inner hair cells, which occurs during the time of expected afferent synaptogenesis. The process is associated with degeneration and protracted division of the normally postmitotic afferent spiral ganglion neurons. To investigate the potential role of neurotrophins in the afferent synaptogenesis of inner hair cells, we exposed bv newborn cochleas in organotypic culture to brain‐derived neurotrophic factor (BDNF), neurotrophin‐3 (NT‐3) and nerve growth factor (NGF), and also to gamma aminobutyric acid (GABA), for up to 8 days. The study was done using light and electron microscopy. Only about 20% of the inner hair cells survived in culture, regardless of the treatment, similar to the number in the intact mutant in our colony. Depending on the exogenous treatment, this population consisted of either innervated ultrastructurally normal cells or denervated dedifferentiated cells wrapped—in lieu of nerve endings—by the supporting inner phalangeal and border cells. In the control and GABA cultures, inner hair cells were mostly denervated. BDNF and NT‐3 alone or combined increased synaptogenesis and hair cell survival only during the first 3 days (by about 10%); however, the cells became denervated by 8 postnatal (PN). Only NGF induced stable innervation and differentiation of neurosensory relationships, including supernumerary innervation characteristic of the intact bv. Denervation among the remaining 20% of inner hair cells induced a reactive wrapping by inner phalangeal and border cells which evidently extended inner hair cell survival. Immunocytochemical studies of these reactive supporting cells were done in the intact (8 PN) mutant cochlea. The supporting cells that provide sustenance to the denervated inner hair cells displayed strong BDNF (and possibly NT‐3) immunoreactivity. Subsequently, we revealed the presence of all three neurotrophins in the inner hair cell region of the developing (1–8 PN) cochlea of the normal ICR mouse. The inner hair cells expressed all three neurotrophins; BDNF prevailed in the inner phalangeal cells, NT‐3 in the pillar cells and inner phalangeal cells, and NGF in the pillar cells. In conclusion: initially, the 80% loss of inner hair cells is apparently caused by their failed afferent synaptogenesis. Exogenous neurotrophins influence synaptogenesis in the bv in culture, but NGF alone is successful in promoting stable neurosensory relationships. The presence of neurotrophins in supporting cells in the normal and degenerating cochlea indicates their role in the sustenance of inner hair cells.

Keywords

Aging, Hair Cells, Auditory, Inner, Cell Survival, Brain-Derived Neurotrophic Factor, Cell Count, Cell Differentiation, Deafness, Mice, Mutant Strains, Cell Line, Mice, Animals, Newborn, Neurotrophin 3, Reference Values, Nerve Degeneration, Nerve Growth Factor, Synapses, Animals, Nerve Growth Factors, Organ of Corti, gamma-Aminobutyric Acid

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Average
Average