Differential expression of heat shock proteins in Drosophila embryonic cells following metal ion exposure
pmid: 2115004
Differential expression of heat shock proteins in Drosophila embryonic cells following metal ion exposure
Drosophila embryonic cells were exposed to a number of metal ions that have been previously reported to act as teratogens in mammalian systems, including some known to induce heat shock (stress) proteins in a variety of model systems. This study examined the effects of these ions both on differentiation of muscles and neurons and on the induction of heat shock proteins. Metals such as arsenate, cadmium, and mercury all inhibited neuron and/or muscle differentiation in Drosophila embryonic cultures, while they also induced the entire set of heat shock proteins. Two metal ions, nickel and zinc, were shown to induce only the 22- and 23-K proteins, a pattern similar to that seen in "classical" teratogens reported previously. None of the metals tested induced only the 26- and 27-K proteins. These results suggest that there exist different regulatory mechanisms responsible for the heat shock response.
- California State University System United States
- California State University, San Bernardino United States
- City Of Hope National Medical Center United States
Molecular Weight, Drosophila melanogaster, Embryo, Nonmammalian, Metals, Cations, Microscopy, Electron, Scanning, Animals, Cells, Cultured, Heat-Shock Proteins
Molecular Weight, Drosophila melanogaster, Embryo, Nonmammalian, Metals, Cations, Microscopy, Electron, Scanning, Animals, Cells, Cultured, Heat-Shock Proteins
13 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).37 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
