Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochimica et Biophy...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 1999
License: Elsevier Non-Commercial
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biochimica et Biophysica Acta (BBA) - Biomembranes
Article . 1999 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 4 versions

Modification of the N-terminal polyserine cluster alters stability of the plasma membrane H+-ATPase from Saccharomyces cerevisiae

Authors: Hasper, Alinda; Soteropoulos, Patricia; Perlin, David S;

Modification of the N-terminal polyserine cluster alters stability of the plasma membrane H+-ATPase from Saccharomyces cerevisiae

Abstract

The N-terminus of the H(+)-ATPase from Saccharomyces cerevisiae contains a serine-rich cluster of 11 serine residues in the first 17 amino acids, including a stretch of eight consecutive serine residues. This cluster is conserved in the weakly expressed PMA2 gene from the same organism, but it is not present in PMA genes from other organisms suggesting that it is not likely to represent a conserved functional motif. To better understand whether this region plays a regulatory role, a series of mutant enzymes were generated in which the serine tract was systematically converted to alanine or deleted. Conversion of the first six serine residues to alanine or deletion of the entire serine tract had little effect on cell growth phenotypes. However, when eight or more serines were converted, the mutant cells displayed prominent hygromycin B-resistant and low pH-sensitive phenotypes indicative of reduced H(+)-ATPase function. The mutant enzymes were found to display relatively normal kinetic properties for ATP hydrolysis, but showed significantly decreased abundance in the plasma membrane under stress conditions when eight or more serine residues were converted to alanine. The reduced abundance of the enzyme appeared to be due to degradative turnover, as mutant enzymes with multiple alanine substitutions showed an accelerated rate of turnover relative to wild-type. The polyserine tract in the H(+)-ATPase does not appear to be important for catalysis, but may contribute to overall protein stability.

Related Organizations
Keywords

PMA1, Alanine, Base Sequence, Proton ATPase, Cell Membrane, Genes, Fungal, Biophysics, Cell Biology, Saccharomyces cerevisiae, Hydrogen-Ion Concentration, Biochemistry, Kinetics, Proton-Translocating ATPases, Enzyme Stability, Mutation, Mutagenesis, Site-Directed, Polyserine, Amino Acid Sequence, Peptides, DNA Primers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Average
hybrid