Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Plantaarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Planta
Article . 2007 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Planta
Article . 2007
versions View all 2 versions

Developmental control of Arabidopsis seed oil biosynthesis

Authors: Hongyun, Wang; Jinhua, Guo; Kris N, Lambert; Yun, Lin;

Developmental control of Arabidopsis seed oil biosynthesis

Abstract

Arabidopsis transcriptional factors LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON2 (LEC2), FUSCA3 (FUS3), ABSCISIC ACID3 (ABI3), and ABSCISIC ACID5 (ABI5) are known to regulate multiple aspects of seed development. In an attempt to understand the developmental control of storage product accumulation, we observed the expression time course of the five transcripts. The sequential expression of these factors during seed fill suggests differentiation of their normal responsibilities. By extending the expression periods of the two early genes LEC1 and LEC2 in transgenic seeds, we demonstrated that the subsequent timing of FUS3, ABI3, and ABI5 transcripts depends on LEC1 and LEC2. Because a delayed onset or reduced level of FUS3 mRNA coincided with reduction of seed oil content in the transgenic seeds, the role of FUS3 in oil deposition was further examined. Analysis of published seed transcriptome data indicated that FUS3 transcript increased together with nearly all the plastidial fatty acid biosynthetic transcripts during development. The ability of FUS3 to rapidly induce fatty acid biosynthetic gene expression was confirmed using transgenic Arabidopsis seedlings expressing a dexamethasone (DEX)-inducible FUS3 and Arabidopsis mesophyll protoplasts transiently expressing the FUS3 gene. By accommodating the current evidence, we propose a hierarchical architecture of the transcriptional network in Arabidopsis seeds in which the oil biosynthetic pathway is integrated through the master transcriptional factor FUS3.

Keywords

Time Factors, Transcription, Genetic, Arabidopsis Proteins, Protoplasts, Fatty Acids, Arabidopsis, Genes, Plant, Plants, Genetically Modified, Models, Biological, Seedlings, Seeds, Plant Oils, RNA, Messenger, Transcription Factors

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%