Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Experimen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Experimental Botany
Article . 2007 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions

Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction

Authors: Linda M, Robles; Jessica S, Wampole; Matthew J, Christians; Paul B, Larsen;

Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction

Abstract

eer4 was isolated as an Arabidopsis mutant with an extreme response to ethylene in dark-grown seedlings that was also found to have partial ethylene insensitivity at the level of ethylene-dependent gene expression, including ERF1. Subsequent cloning of eer4 revealed an inappropriate stop codon in a previously uncharacterized TFIID-interacting transcription factor homologous to human TAF12 and yeast TAF61. Genetic and pharmacological analysis demonstrated that the eer4 phenotype is strictly ethylene dependent in seedlings, yet a double mutant with the partially ethylene-insensitive Arabidopsis mutant, ein3-1, had restored ethylene responsiveness, indicating that eer4 also regulates a previously unknown resetting or dampening mechanism for the ethylene signalling pathway. Consistent with the absolute requirement of EER4 for ERF1 expression, biochemical analysis showed that EER4 is localized to the nucleus where it probably recruits EIN3 and probably other transcription factors along with components of the TFIID complex for expression of a subset of genes required for either manifestation or subsequent dampening of the response to ethylene.

Related Organizations
Keywords

Arabidopsis Proteins, Green Fluorescent Proteins, Molecular Sequence Data, Arabidopsis, Darkness, Ethylenes, Models, Biological, Phenotype, Codon, Nonsense, Sequence Analysis, Protein, Transcription Factor TFIID, Amino Acid Sequence, Peptide Termination Factors, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
bronze