Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemistryarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemistry
Article
Data sources: UnpayWall
Biochemistry
Article . 2005 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2005 . Peer-reviewed
Data sources: Crossref
Biochemistry
Article . 2005
versions View all 3 versions

Defined Sites of Interaction between Subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the Stator Structure of the Vacuolar H+-ATPase

Authors: Richard P O, Jones; Lyndsey J, Durose; John B C, Findlay; Michael A, Harrison;

Defined Sites of Interaction between Subunits E (Vma4p), C (Vma5p), and G (Vma10p) within the Stator Structure of the Vacuolar H+-ATPase

Abstract

Vacuolar H(+)-ATPases (V-ATPases) are multi-subunit membrane proteins that couple ATP hydrolysis to the extrusion of protons from the cytoplasm. Although they share a common macromolecular architecture and rotational mechanism with the F(1)F(0)-ATPases, the organization of many of the specialized V-ATPase subunits within this rotary molecular motor remains uncertain. In this study, we have identified sequence segments involved in linking putative stator subunits in the Saccharomyces V-ATPase. Precipitation assays revealed that subunits Vma5p (subunit C) and Vma10p (subunit G), expressed as glutathione-S-transferase fusion proteins in E. coli, are both able to interact strongly with Vma4p (subunit E) expressed in a cell-free system. GST-Vma10p also associated with Vma2p and Vma1p, the core subunits of the ATP-hydrolyzing domain, and was able to self-associate to form a dimer. Mutations within the first 19-residue region of Vma4p, which disrupted interaction with Vma5p in vitro, also prevented the Vma4p polypeptide from restoring V-ATPase function in a complementation assay in vivo. These mutations did not prevent assembly of Vma5p (subunit C) and Vma2p (subunit B) into an inactive complex at the vacuolar membrane, indicating that Vma5p must make multiple interactions involving other V-ATPase subunits. A second, highly conserved region of Vma4p between residues 19 and 38 is involved in binding Vma10p. This region is highly enriched in charged residues, suggesting a role for electrostatic effects in Vma4p-Vma10p interaction. These protein interaction studies show that the N-terminal region of Vma4p is a key factor not only in the stator structure of the V-ATPase rotary molecular motor, but also in mediating interactions with putative regulatory subunits.

Related Organizations
Keywords

Vacuolar Proton-Translocating ATPases, Saccharomyces cerevisiae Proteins, Cell-Free System, Molecular Motor Proteins, Recombinant Fusion Proteins, Genetic Complementation Test, Molecular Sequence Data, Saccharomyces cerevisiae, Protein Subunits, Protein Interaction Mapping, Escherichia coli, Mutagenesis, Site-Directed, Animals, Humans, Amino Acid Sequence, Protein Processing, Post-Translational

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    43
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
43
Average
Top 10%
Top 10%
bronze