Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Exper...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2011
Data sources: PubMed Central
The Journal of Experimental Medicine
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

The Th17 immune response is controlled by the Rel–RORγ–RORγT transcriptional axis

Authors: Ruan, Qingguo; Kameswaran, Vasumathi; Zhang, Yan; Zheng, Shijun; Sun, Jing; Wang, Junmei; DeVirgiliis, Jennifer; +3 Authors

The Th17 immune response is controlled by the Rel–RORγ–RORγT transcriptional axis

Abstract

The Th17 cells use the retinoid-related orphan receptor-γ (Rorg or Rorc) to specify their differentiation and lineage-specific function. However, how Rorg is switched on during Th17 differentiation is unknown. We report here that c-Rel and RelA/p65 transcription factors drive Th17 differentiation by binding to and activating two distinct Rorg promoters that control RORγT and RORγ expression, respectively. Similar to RORγT, RORγ is selectively expressed in Th17 cells and is effective in specifying the Th17 phenotype. T cells deficient in c-Rel or RelA are significantly compromised in Th17 differentiation, and c-Rel–deficient mice are defective in Th17 responses. Thus, Th17 immunity is controlled by a Rel–RORγ–RORγT axis, and strategies targeting Rel/NF-κB can be effective for controlling Th17 cell–mediated diseases.

Keywords

Transcription, Genetic, Interleukin-17, Transcription Factor RelA, Cell Differentiation, Mice, Transgenic, Nuclear Receptor Subfamily 1, Group F, Member 1, Nuclear Receptor Subfamily 1, Group F, Member 3, Article, Proto-Oncogene Proteins c-rel, Mice, Inbred C57BL, Mice, Mice, Inbred NOD, Animals, Humans, Th17 Cells, Promoter Regions, Genetic, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    235
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
235
Top 1%
Top 10%
Top 1%
Green
bronze