Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 1992 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 1992
versions View all 2 versions

Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DMA-binding domain bound to its DNA target

Authors: R S, Hegde; S R, Grossman; L A, Laimins; P B, Sigler;

Crystal structure at 1.7 Å of the bovine papillomavirus-1 E2 DMA-binding domain bound to its DNA target

Abstract

The dominant transcriptional regulator of the papillomaviruses, E2, binds to its specific DNA target through a previously unobserved dimeric antiparallel beta-barrel. The DNA is severely but smoothly bent over the barrel by the interaction of successive major grooves with a pair of symmetrically disposed alpha-helices. The specific interface is an 'interwoven' network of interactions where the identifying base pairs of the target contact more than one amino-acid side chain and the discriminating amino acids interact with more than one base pair.

Keywords

Models, Molecular, Protein Folding, Binding Sites, Base Sequence, Molecular Structure, Macromolecular Substances, Molecular Sequence Data, Hydrogen Bonding, DNA, DNA-Binding Proteins, Viral Proteins, Nucleic Acid Conformation, Amino Acid Sequence, Crystallization, Bovine papillomavirus 1

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    371
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
371
Top 10%
Top 1%
Top 1%