Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ University of Califo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2001
versions View all 3 versions

Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila

Authors: Steffan, JS; Bodai, L; Pallos, J; Poelman, M; McCampbell, A; Apostol, BL; Kazantsev, A; +8 Authors

Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila

Abstract

Proteins with expanded polyglutamine repeats cause Huntington's disease and other neurodegenerative diseases. Transcriptional dysregulation and loss of function of transcriptional co-activator proteins have been implicated in the pathogenesis of these diseases. Huntington's disease is caused by expansion of a repeated sequence of the amino acid glutamine in the abnormal protein huntingtin (Htt). Here we show that the polyglutamine-containing domain of Htt, Htt exon 1 protein (Httex1p), directly binds the acetyltransferase domains of two distinct proteins: CREB-binding protein (CBP) and p300/CBP-associated factor (P/CAF). In cell-free assays, Httex1p also inhibits the acetyltransferase activity of at least three enzymes: p300, P/CAF and CBP. Expression of Httex1p in cultured cells reduces the level of the acetylated histones H3 and H4, and this reduction can be reversed by administering inhibitors of histone deacetylase (HDAC). In vivo, HDAC inhibitors arrest ongoing progressive neuronal degeneration induced by polyglutamine repeat expansion, and they reduce lethality in two Drosophila models of polyglutamine disease. These findings raise the possibility that therapy with HDAC inhibitors may slow or prevent the progressive neurodegeneration seen in Huntington's disease and other polyglutamine-repeat diseases, even after the onset of symptoms.

Keywords

Huntington's Disease, Glutamine, Neurodegenerative, PC12 Cells, Repetitive Sequences, Animals, Genetically Modified, Histones, 2.1 Biological and endogenous factors, Drosophila Proteins, Aetiology, Enzyme Inhibitors, Glutathione Transferase, Histone Acetyltransferases, Huntingtin Protein, Nuclear Proteins, Neurodegenerative Diseases, Acetylation, CREB-Binding Protein, Amino Acid, Sin3 Histone Deacetylase and Corepressor Complex, Huntington Disease, Neurological, Drosophila, Protein Structure, Saccharomyces cerevisiae Proteins, General Science & Technology, Genetically Modified, Nerve Tissue Proteins, Histone Deacetylases, Rare Diseases, Acetyltransferases, Genetics, Animals, Animal, Neurosciences, Rats, Brain Disorders, Repressor Proteins, Histone Deacetylase Inhibitors, Disease Models, Animal, Gene Expression Regulation, Disease Models, Nerve Degeneration, Trans-Activators, Peptides, E1A-Associated p300 Protein, Tertiary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1K
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1K
Top 1%
Top 0.1%
Top 0.1%
Green
hybrid