Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Evolutionary Bio...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Evolutionary Biology
Article . 2009 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Evolutionary Biology
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2009
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Evolutionary Biology
Article . 2009
Data sources: DOAJ
versions View all 5 versions

Evolution of the sugar receptors in insects

Authors: Robertson Hugh M; Kent Lauren B;
Abstract

Perception of sugars is an invaluable ability for insects which often derive quickly accessible energy from these molecules. A distinctive subfamily of eight proteins within the gustatory receptor (Gr) family has been identified as sugar receptors (SRs) in Drosophila melanogaster (Gr5a, Gr61a, and Gr64a-f). We examined the evolution of these SRs within the 12 available Drosophila genome sequences, as well as three mosquito, two moth, and beetle, bee, and wasp genome sequences.While most Drosophila species retain all eight genes, we find that the three Drosophila subgenus species have lost Gr64d, while D. grimshawi and the D. pseudoobscura/persimilis sibling species have also lost Gr5a function. The entire Gr64 gene complex was also duplicated in the D. grimshawi lineage, but only one potentially functional copy of each gene has been retained. The numbers of SRs range from two in the hymenopterans Apis mellifera and Nasonia vitripennis to 16 in the beetle Tribolium castaneum. An unusual aspect is the evolution of a novel exon from intronic sequence in an expanded set of four SRs in Bombyx mori (BmGr5-8), which appears to be the first example of such exonization in insects. Twelve intron gains and 63 losses are inferred within the SR family.Examination of the SRs in these fly, mosquito, moth, beetle, and hymenopteran genome sequences reveals that they appear to have originated independently from single ancestral genes within the dipteran and coleopteran lineages, and two genes in the lepidopteran and hymenopteran lineages. The origin of the insect SRs will eventually be illuminated by additional basal insect and arthropod genome sequences.

Keywords

Insecta, Models, Genetic, Evolution, Genome, Insect, Molecular Sequence Data, Genes, Insect, Receptors, Cell Surface, Exons, Sequence Analysis, DNA, Introns, Evolution, Molecular, Drosophila melanogaster, Multigene Family, QH359-425, Animals, Drosophila Proteins, Amino Acid Sequence, Sequence Alignment, Ecology, Evolution, Behavior and Systematics, Phylogeny, Research Article

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 10%
Top 10%
Top 10%
Green
gold