Rho Family Guanine Nucleotide Exchange Factor Brx Couples Extracellular Signals to the Glucocorticoid Signaling System
Rho Family Guanine Nucleotide Exchange Factor Brx Couples Extracellular Signals to the Glucocorticoid Signaling System
Glucocorticoids regulate many crucial biologic functions through their cytoplasmic/nuclear glucocorticoid receptors (GR). Excess, deficiency, or alteration in tissue sensitivity to glucocorticoids has been associated with major causes of human morbidity and mortality. Brx, a cytoplasmic Rho family guanine nucleotide exchange factor, binds to and influences the activity of several nuclear hormone receptors. We examined the functional and molecular interactions between GR and Brx. The glucocorticoid sensitivity of lymphocytes obtained from mice haplo-insufficient for Brx was significantly decreased. Conversely, GR-mediated transcriptional activity of a glucocorticoid response element (GRE)-mediated glucocorticoid-responsive promoter was enhanced by Brx in a guanine nucleotide exchange factor domain-dependent fashion. Brx interacted with GR, forming a ternary complex with RhoA. In a chromatin immunoprecipitation assay, Brx and RhoA were co-precipitated with GREs only in the presence of ligand-activated GR. Extracellularly administered lysophosphatidic acid, which activates its signaling cascade through a specific membrane GTP-binding protein (G-protein)-coupled receptor in a G-protein alpha(13)-, Brx-, and RhoA-dependent fashion, enhanced GR transcriptional activity, whereas depletion of endogenous Brx attenuated this effect. These findings suggest that glucocorticoid signaling and, hence, the tissue sensitivity to glucocorticoids, may be coupled to extracellular signals via Brx and small G-proteins. Nuclear Brx might act as a local GRE-GR-transcriptosome activator by mediating the effect of small G-proteins on glucocorticoid-regulated genes.
- National Center for Complementary and Integrative Health United States
- Uniformed Services University of the Health Sciences United States
- National Institute of Health Pakistan
- Athens State University United States
- National and Kapodistrian University of Athens Greece
rho GTP-Binding Proteins, Transcription, Genetic, A Kinase Anchor Proteins, Kidney, Transfection, Minor Histocompatibility Antigens, Mice, Receptors, Glucocorticoid, Proto-Oncogene Proteins, Chlorocebus aethiops, Animals, Guanine Nucleotide Exchange Factors, Humans, Lymphocytes, Glucocorticoids, Adaptor Proteins, Signal Transducing, HeLa Cells, Monomeric GTP-Binding Proteins, Plasmids, Signal Transduction
rho GTP-Binding Proteins, Transcription, Genetic, A Kinase Anchor Proteins, Kidney, Transfection, Minor Histocompatibility Antigens, Mice, Receptors, Glucocorticoid, Proto-Oncogene Proteins, Chlorocebus aethiops, Animals, Guanine Nucleotide Exchange Factors, Humans, Lymphocytes, Glucocorticoids, Adaptor Proteins, Signal Transducing, HeLa Cells, Monomeric GTP-Binding Proteins, Plasmids, Signal Transduction
15 Research products, page 1 of 2
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).43 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
