PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development
PEX11β induces peroxisomal gene expression and alters peroxisome number during early Xenopus laevis development
Abstract Background Peroxisomes are organelles whose roles in fatty acid metabolism and reactive oxygen species elimination have contributed much attention in understanding their origin and biogenesis. Many studies have shown that de novo peroxisome biogenesis is an important regulatory process, while yeast studies suggest that total peroxisome numbers are in part regulated by proteins such as Pex11, which can facilitate the division of existing peroxisomes. Although de novo biogenesis and divisions are likely important mechanisms, the regulation of peroxisome numbers during embryonic development is poorly understood. Peroxisome number and function are particularly crucial in oviparous animals such as frogs where large embryonic yolk and fatty acid stores must be quickly metabolized, and resulting reactive oxygen species eliminated. Here we elucidate the role of Pex11β in regulating peroxisomal gene expression and number in Xenopus laevis embryogenesis. Results Microinjecting haemagglutinin (HA) tagged Pex11β in early embryos resulted in increased RNA levels for peroxisome related genes PMP70 and catalase at developmental stages 10 and 20, versus uninjected embryos. Catalase and PMP70 proteins were found in punctate structures at stage 20 in control embryos, whereas the injection of ectopic HA-Pex11β induced their earlier localization in punctate structures at stage 10. Furthermore, the peroxisomal marker GFP-SKL, which was found localized as peroxisome-like structures at stage 20, was similarly found at stage 10 when co-microinjected with HA-Pex11β. Conclusions Overexpressed Pex11β altered peroxisomal gene levels and induced the early formation of peroxisomes-like structures during development, both of which demonstrate that Pex11β may be a key regulator of peroxisome number in early Xenopus embryos.
- Western University Canada
Peroxisomal gene expression, 570, Green Fluorescent Proteins, 610, Xenopus Proteins, Peroxisome number, Cell Line, Xenopus laevis, Peroxisomes, Animals, Biology, Fatty Acids, PEX11β, Gene Expression Regulation, Developmental, Membrane Proteins, PEX11β, Catalase, Immunohistochemistry, Recombinant Proteins, RNA, ATP-Binding Cassette Transporters, Female, Developmental Biology, Research Article
Peroxisomal gene expression, 570, Green Fluorescent Proteins, 610, Xenopus Proteins, Peroxisome number, Cell Line, Xenopus laevis, Peroxisomes, Animals, Biology, Fatty Acids, PEX11β, Gene Expression Regulation, Developmental, Membrane Proteins, PEX11β, Catalase, Immunohistochemistry, Recombinant Proteins, RNA, ATP-Binding Cassette Transporters, Female, Developmental Biology, Research Article
7 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 1996IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).9 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
