Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Plant Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
The Plant Journal
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Plant Journal
Article . 2012 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions

Enhancing protein stability with retained biological function in transgenic plants

Authors: In-Cheol, Jang; Qi-Wen, Niu; Shulin, Deng; Pingzhi, Zhao; Nam-Hai, Chua;

Enhancing protein stability with retained biological function in transgenic plants

Abstract

SummaryThe final expression level of a transgene‐derived protein in transgenic plants depends on transcriptional and post‐transcriptional processes. Here, we focus on methods to improve protein stability without comprising biological function. We found that the four isoforms of the Arabidopsis RAD23 protein family are relatively stable. The UBA2 domain derived from RAD23a can be used as a portable stabilizing signal to prolong the half‐life of two unstable transcription factors (TFs), HFR1 and PIF3. The increased stability of the TF–UBA2 fusion proteins results in an enhanced phenotype in transgenic plants compared to expression of the TF alone. Similar results were obtained for the RAD23a UBA1 domain. In addition to UBA1/2 of RAD23a, the UBA domain from the Arabidopsis DDI1 protein also increased the half‐life of the unstable protein JAZ10.1, which is involved in jasmonate signaling. Taken together, our results suggest that UBA fusions can be used to increase the stability of unstable proteins for basic plant biology research as well as crop improvement.

Related Organizations
Keywords

Protein Synthesis Inhibitors, Arabidopsis Proteins, Leupeptins, Protein Stability, Arabidopsis, Nuclear Proteins, Receptors, Cytoplasmic and Nuclear, Cyclopentanes, Acetates, Plants, Genetically Modified, Protein Structure, Tertiary, DNA-Binding Proteins, Phenotype, Plant Growth Regulators, Gene Expression Regulation, Plant, Basic Helix-Loop-Helix Transcription Factors, Protein Isoforms, Oxylipins, Cycloheximide, Half-Life

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Average
Average
bronze