Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2003 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions

Cleavage of 14-3-3 Protein by Caspase-3 Facilitates Bad Interaction with Bcl-x(L) during Apoptosis

Authors: Won, J; Kim, DY; La, M; Kim, D; Meadows, GG; Joe, CO Joe, Cheol O;

Cleavage of 14-3-3 Protein by Caspase-3 Facilitates Bad Interaction with Bcl-x(L) during Apoptosis

Abstract

The 14-3-3 epsilon protein was identified as one of the caspase-3 substrates by the modified yeast two-hybrid system. The cellular 14-3-3 epsilon protein was also cleaved in response to the treatment of apoptosis inducers in cultured mammalian cells. Asp238 of the 14-3-3 epsilon protein was determined as the site of cleavage by caspase-3. The affinity of the cleaved 14-3-3 mutant protein (D238) to Bad, a death-promoting Bcl-2 family protein, was lower than that of wild type or the uncleavable mutant 14-3-3 epsilon protein (D238A). However, Bad associated with the cellular Bcl-x(L) more effectively in human 293T cells co-expressing Bad with the truncated form of the 14-3-3 epsilon protein (D238) than in control cells co-expressing Bad with wild type or the uncleavable mutant 14-3-3 epsilon protein (D238A). The present study suggests that the cleavage of 14-3-3 protein during apoptosis promotes cell death by releasing the associated Bad from the 14-3-3 protein and facilitates Bad translocation to the mitochondria and its interaction with Bcl-x(L).

Keywords

Binding Sites, Caspase 3, Caspase 1, Immunoblotting, Gene Expression, Proteins, Apoptosis, Biological Transport, 612, Flow Cytometry, Mitochondria, Enzyme Activation, 14-3-3 Proteins, Proto-Oncogene Proteins c-bcl-2, Caspases, COS Cells, Mutagenesis, Site-Directed, Animals, Humans, Carrier Proteins, Immunosorbent Techniques

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    72
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
72
Top 10%
Top 10%
Top 10%
gold