Regulated Ire1-dependent decay of messenger RNAs in mammalian cells
Regulated Ire1-dependent decay of messenger RNAs in mammalian cells
Maintenance of endoplasmic reticulum (ER) function is achieved in part through Ire1 (inositol-requiring enzyme 1), a transmembrane protein activated by protein misfolding in the ER. The cytoplasmic nuclease domain of Ire1 cleaves the messenger RNA (mRNA) encoding XBP-1 (X-box–binding protein 1), enabling splicing and production of this active transcription factor. We recently showed that Ire1 activation independently induces the rapid turnover of mRNAs encoding membrane and secreted proteins in Drosophila melanogaster cells through a pathway we call regulated Ire1-dependent decay (RIDD). In this study, we show that mouse fibroblasts expressing wild-type Ire1 but not an Ire1 variant lacking nuclease activity also degrade mRNAs in response to ER stress. Using a second variant of Ire1 that is activated by a small adenosine triphosphate analogue, we show that although XBP-1 splicing can be artificially induced in the absence of ER stress, RIDD appears to require both Ire1 activity and ER stress. Our data suggest that cells use a multitiered mechanism by which different conditions in the ER lead to distinct outputs from Ire1.
- Howard Hughes Medical Institute United States
- University of California System United States
- University of Utah United States
- University of California, San Francisco United States
- Department of Biology United States
1.1 Normal biological development and functioning, RNA Stability, Messenger, Membrane Proteins, Cell Biology, Biological Sciences, Fibroblasts, Protein Serine-Threonine Kinases, Endoplasmic Reticulum, Medical and Health Sciences, Mice, Underpinning research, Genetics, 2.1 Biological and endogenous factors, RNA, Animals, Generic health relevance, RNA, Messenger, Aetiology, Research Articles, Developmental Biology
1.1 Normal biological development and functioning, RNA Stability, Messenger, Membrane Proteins, Cell Biology, Biological Sciences, Fibroblasts, Protein Serine-Threonine Kinases, Endoplasmic Reticulum, Medical and Health Sciences, Mice, Underpinning research, Genetics, 2.1 Biological and endogenous factors, RNA, Animals, Generic health relevance, RNA, Messenger, Aetiology, Research Articles, Developmental Biology
3 Research products, page 1 of 1
- 2017IsRelatedTo
- 2017IsRelatedTo
- 2017IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).896 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
