Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Medicine R...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Medicine Reports
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
Molecular Medicine Reports
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Paired‑related homeobox 1 overexpression promotes multidrug resistance via PTEN/PI3K/AKT signaling in MCF‑7 breast cancer cells

Authors: Luo, Haoyue; Cong, Shaobo; Dong, Jiaojiao; Jin, Litao; Jiang, Dandan; Wang, Xingang; Chen, Qingfeng; +1 Authors

Paired‑related homeobox 1 overexpression promotes multidrug resistance via PTEN/PI3K/AKT signaling in MCF‑7 breast cancer cells

Abstract

Multidrug resistance (MDR) is a major cause of disease relapse and mortality in breast cancer. Paired‑related homeobox 1 (PRRX1) is associated with the epithelial‑mesenchymal transition (EMT), which is involved in tumor development, including cell invasion and MDR. However, the effect of PRRX1 on MDR had not clearly established. The present study investigated the influence of PRRX1 on MDR and the underlying molecular mechanisms in MCF‑7 breast cancer cells. MCF‑7 cells were divided into PRRX1+ group (cells transfected with a recombinant plasmid carrying the PRRX1 gene), negative control group (cells transfected with a blank vector) and blank group (untreated cells). It was found that the relative protein and mRNA expression levels of PRRX1, N‑cadherin, vimentin and P‑glycoprotein were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. The half‑maximal inhibitory concentration of three groups after treatment with docetaxel and cis‑platinum complexes were significantly higher in PRRX1‑overexpressing MCF‑7 cells compared with those in control cells. Furthermore, relative PTEN expression decreased significantly and levels of phosphorylated PI3K and AKT increased substantially in PRRX1‑overexpressing MCF‑7 cells. These results indicated that PRRX1 overexpression may induce MDR via PTEN/PI3K/AKT signaling in breast cancer. It is highly recommended that PRRX1 gene expression detection should be performed in patients with breast cancer to aid the selection of more appropriate treatments, which will lead to an improved prognosis in clinical practice.

Related Organizations
Keywords

Homeodomain Proteins, Epithelial-Mesenchymal Transition, PTEN Phosphohydrolase, Breast Neoplasms, Articles, Docetaxel, Drug Resistance, Multiple, Gene Expression Regulation, Neoplastic, Phosphatidylinositol 3-Kinases, Drug Resistance, Neoplasm, MCF-7 Cells, Humans, Female, Cisplatin, Proto-Oncogene Proteins c-akt, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%
Green
hybrid