Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Caltech Authors (Cal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Current Biology
Article . 2022 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
https://doi.org/10.1101/2021.1...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions

Interneuron control of C. elegans developmental decision-making

Authors: Cynthia M. Chai; Mahdi Torkashvand; Maedeh Seyedolmohadesin; Heenam Park; Vivek Venkatachalam; Paul W. Sternberg;

Interneuron control of C. elegans developmental decision-making

Abstract

SUMMARYAnimals integrate external stimuli to shape their physiological responses throughout development. In adverse environments, Caenorhabditis elegans larvae can enter a stress-resistant diapause state with arrested metabolism and reproductive physiology. Amphid sensory neurons feed into both rapid chemotactic and short-term foraging mode decisions, mediated by amphid and premotor interneurons, as well as the long-term diapause decision. We identify amphid interneurons that integrate pheromone cues and propagate this information via a neuropeptidergic pathways to influence larval developmental fate, bypassing the pre-motor system. AIA interneuron-derived FLP-2 neuropeptide signaling promotes reproductive growth and AIA activity is suppressed by pheromone. FLP-2 acts antagonistically to the insulin-like INS-1. FLP-2’s growth promoting effects are inhibited by upstream metabotropic glutamatergic signaling and mediated by the broadly-expressed neuropeptide receptor NPR-30. Conversely, the AIB interneurons and their neuropeptide receptor NPR-9/GALR2 promote diapause entry. These neuropeptidergic outputs allow reuse of parts of a sensory system for a decision with a distinct timescale.

Keywords

570, Sensory Receptor Cells, Neuropeptides, interneuron, Pheromones, pheromone, Interneurons, developmental plasticity, circuits, G-protein coupled receptor, physiology, Animals, metabotropic glutamate receptor, Caenorhabditis elegans, Caenorhabditis elegans Proteins, neuropeptide, metabolism

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    20
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
20
Top 10%
Average
Top 10%
Green