Powered by OpenAIRE graph
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Muscle Re...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Muscle Research and Cell Motility
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions

Membrane potentials in Rana temporaria muscle fibres in strongly hypertonic solutions

Authors: James A, Fraser; Kai Yuen, Wong; Juliet A, Usher-Smith; Christopher L-H, Huang;

Membrane potentials in Rana temporaria muscle fibres in strongly hypertonic solutions

Abstract

Conventional microelectrode methods were used to measure variations in resting membrane potentials, E(m), of intact amphibian skeletal muscle fibres over a wide range of increased extracellular tonicities produced by inclusion of varying extracellular concentrations of sucrose. Moderate increases in extracellular tonicity to up to 2.6x normal (2.6tau) under Cl(-) free conditions produced negative shifts in E(m) that followed expectations for the K(+) Nernst equation (E(K)) applied to a perfect osmometer containing a conserved intracellular K(+) content despite any accompanying cell volume change. In contrast, E(m) remained stable in fibres studied in otherwise similar Cl(-) containing solutions, consistent with E(m) stabilization despite negative shifts in E(K) through inward cation-Cl(-) co-transport activity. Short exposures to higher tonicities (>3tau) similarly produced negative shifts in E(m) in Cl(-) free but not Cl(-) containing solutions. However, prolonged exposures to solutions of >3tau caused gradual net positive changes in E (m) in both Cl(-) containing and Cl(-) free solutions suggesting that these changes were independent of cation-Cl(-) transport. Indeed, there was no evidence of cation-Cl(-) co-transport activity in strongly hypertonic solutions despite its predicted energetic favourability, suggesting its possible regulation by E (m) in muscle. Additional findings implicated a failure to maintain greatly increased transmembrane [K(+)] gradients in these E(m) changes. Thus: (1) halving or doubling [K(+)](e) produced negative or positive shifts in E(m), respectively in isotonic or moderately hypertonic (3tau) solutions; (2) subsequent restoration of isotonic extracellular conditions produced further positive changes in E(m) consistent with a dilution of the depleted [K(+)](i) by fibres regaining their original resting volumes; (3) quantitative modelling similarly predicted a gradual net efflux of K(+) as the balance between active and passive [K(+)] fluxes altered due to increased transmembrane [K(+)] gradients in hypertonic and low [K(+)](e) solutions. However, the observed positive changes in E(m) in the most strongly hypertonic solutions eventually exceeded these predictions suggesting additional limitations on Na(+)/K(+)-ATPase activity in strongly hypertonic solutions.

Related Organizations
Keywords

Sodium Potassium Chloride Symporter Inhibitors, Sodium-Potassium-Chloride Symporters, Hypertonic Solutions, Muscle Fibers, Skeletal, Osmolar Concentration, Rana temporaria, Animals, Hydrogen-Ion Concentration, Sodium-Potassium-Exchanging ATPase, Membrane Potentials

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average